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It is proposed that an internal friction experiment using frequency as the variable should 
be capable of furnishing information about the origin of anomalous Snoek peaks. In order 
to test this proposal an attempt has been made, and is now reported, to numerically 
analyse synthesised experimental data. The results show that, given suitably precise 
experimental data, the analysis can return the number of anomalous peaks together with 
their characteristics. A subsequent choice by the experimenter of a model to explain the 
concentration-dependence of the peaks, allows interaction energies to be deduced. 

1. I n t r o d u c t i o n  
One of the main tools in the investigation of 
binding energies of foreign atoms, such as inter- 
stitials, in a metal or alloy, is the internal friction 
experiment. Anelastic relaxation processes of 
these atoms in their matrix produces resonance 
peaks in the internal friction response at the 
appropriate frequencies. An analysis of the 
internal friction spectrum as a function of  fre- 
quency should therefore yield information on 
these binding energies. In practice, since the 
range of frequency obtainable in the laboratory 
has hitherto been insufficient, frequency has been 
kept fixed while the spectrum is measured over a 
range of  temperature: this is possible because of 
the exponential lIT dependence of the relaxation 
times of the anelastic processes (see equation 2 
below). One disadvantage of such a procedure is 
the difficult spectrum analysis when the peak 
strengths (as well as the peak relaxation times) 
depend on the temperature, as we believe they do 
for certain systems. Such difficulties do not arise 
when frequency is a variable, with the tempera- 
ture held constant. Therefore we have set our- 
selves the task of seeing what can be done with 
an isothermal variable-frequency experiment, 
taking into account the fact that the frequency 
range is severely limited. Since no experimental 

results are available we have simulated an 
experiment (including experimental errors) based 
on a reasonable model for a systemwhere we have 
good reasons to believe that the peak strengths 
are temperature-dependent. Having simulated 
"experimental" data with all the experimental 
parameters, in particular the frequency range, 
set to attainable values, we have then analysed 
these data with the aid of a computer and 
compared the results with the (known) correct 
values. The analysis (and its limitations) are 
discussed in detail; the main conclusion is that an 
isothermal variable-frequency experiment is 
feasible and yields a spectrum that can be 
adequately analysed. 

The internal friction Q-1 caused by an 
anelastic process is given by the relation [1 ] 

OJ'l" 

Q-1 : A 1 + oJ2~ -'-------~ " 

An example of a process which is closely 
described [2] by this expression is the Snoek 
relaxation [3] caused by the stress-induced 
ordering of  interstitial atoms between octahedral 
sites of a bcc lattice. In this instance A, the 
relaxation strength, is a measure of the dissolved 
interstitial atom fraction, ~- is the relaxation time 
and ~o is the atomic jump frequency ( =  2~rf, f 
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being the oscillation frequency of the specimen). 
Internal friction (damping) experiments are 

usually carried out as a function 0f temperature: 
taking some constant value o f f  and 

E 
r = r 0 exp R---T' 

we obtain a damping peak which is an even 
function about the reciprocal of a temperature 
Tm (corresponding to the condition o~r = 1) and 
of a height /I/2 ~-Omax-L By carrying out 
experiments at different frequencies on an alloy 
of known dissolved interstitial fraction ni the 
values of %, E (the activation energy of the 
process) and the proportionality factor K in the 
relation 

KOmax -1 KA 
atom fraction of interstitials -- 100 = 2-6-0' 

can be determined. 
However, the problem of analysis becomes 

severe if the interstitials can occupy more than 
one type of site, such as normal lattice sites and 
those adjacent to substitutional atoms possessing 
a different E value. Further peaks are then 
observed at the appropriate Tv and the measured 
internal friction is the sum of terms of the above 
type with differing r and A. Should the compon- 
ent peaks overlap, then their separation requires 
special analytical techniques. 

In many alloys, substitutional atoms do 
produce such extra peaks - known as anomalous 
peaks-and typical additions are manganese 
[4-7], silicon [8-11] (Fast [12] has raised doubt 
that this element can produce anomalies) or 
vanadium [13, 14] to iron-nitrogen. The origin of 
the anomalies, i.e. the location of the interstitials 
responsible, is under debate, and interest in the 
problem has increased because manganese- 
nitrogen groups evidently strengthen the solid 
solution of iron [15]. 

A preliminary attempt [16] to analyse the 
observed anomalous peak in iron-vanadium- 
nitrogen alloys [13] indicated that it was really 
made up of at least two anomalous Snoek-type 
peak contributions which were thought to result 
from the association of an increasing number of 
nitrogen atoms with dissolved vanadium atoms 
forming different types of complexes. An 
interaction energy was derived but the neglecting 
of the effect of temperature [16, 17], which alters 
the distribution of interstitials during the 
experiment, makes the interaction energy ap- 
proximate. 
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When there is more than one peak the 
spectrum to be analysed is a sum of terms of the 
type introduced above: 

,o~  (11 
Q-* = A~ 1 -t- oJ2r=~ ' 

r 

with 

E~ 
% = r,. o exp ~--~" (2) 

Here in equation 1 the index r labels the peaks, 
and % and A ~ are respectively the relaxation time 
and strength of the rth peak. Equation 2 
expresses the temperature-dependence of r~ in 
terms of the constant -r~ 0 and the activation energy 
E~ for the complex giving rise to the rth peak. As 
mentioned above, the different complexes con- 
sidered here are either those consisting of a single 
isolated interstitial (giving rise to the normal 
Snoek peak) or those consisting of a substitu- 
tional atom grouped with one or more inter- 
stitial neighbours (giving rise to the anomalous 
peaks). Under the assumption that complexes 
involving the same number of interstitials, 
contribute to the same peak (the same A~) [16], 
the relationship between the relaxation strength 
A~ of the rth peak and the interstitial fraction n~ 
in the complex giving rise to that peak is 

KrA,. 
nr = 2 0 0 '  (3) 

The proportionality factors K~ may differ from 
peak to peak. 

As pointed out earlier, the major problem in 
investigating the origin of the anomalous peaks 
is the separation of each from the measured 
spectrum. In an experiment where the tempera- 
ture is varied at fixed frequency the main 
reasons rendering the peak-analysis difficult are 
the following: 
(i) The relaxation strengths A~ may be tempera- 
ture-dependent so that the peaks are not 
symmetrical about their centres in the Q-1 versus 
1/T plot; this applies particularly to the anomal- 
ous peaks. The primary cause of this is the 
temperature-dependence of the distribution of 
interstitials among the various types of complex 
(i.e. of  the set of nr) which becomes more 
pronounced as the substitutional-interstitial 
interaction energy increases. A secondary cause 
is the inherent temperature-dependence of the 
proportionality factors Kr, which are propor- 
tional to T according to the theory of the Snoek 
peak due to Polder [18] (however, the experi- 
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mental verification [19] of this has been doubted 
[20]). 
(ii) The values of the Kr in equation 3 are not 
known for any anomalous peak; they are indeed 
known to vary with alloying and grain size for 
the Snoek peak itself [21]. 
(iii) In the case of the anomalous peaks neither 
the "r,. 0 nor the Er are known (however see the 
remarks in section 2 for the "r~o). 

As an alternative approach to using tempera- 
ture as the independent variable at fixed 
frequency,frequency itself can be employed as the 
independent variable of an isothermal experiment. 
This in itself is not a novel idea but it presents the 
advantage that the A~ and ~-~ are then constant 
over the whole range of the independent variable, 
in contrast to the case when the temperature is 
varied. Provided that the peaks are anelastic the 
damping spectrum can be analysed in terms of 
equation 1 for varying co. The strict constancy of 
the A~ and %, means that the difficulty (i) above 
in the variable-temperature experiment is here 
circumvented; in particular the peaks are sym- 
metric about their centres in a Q-1 versus log o~ 
plot. The spectrum may be analysed to give first 
the A,. and ~-~ for each peak, and subsequently 
the K~ can be derived to give the interstitial 
fractions hr. 

In using frequency as an independent variable, 
we are still faced with a serious problem how- 
ever: only a limited range of frequency is avail- 
able and so only part of the damping spectrum 
can be analysed isothermally. It is one of the 
main objects of the present work to present a 
method of handling such limited data, in order to 
be able to define the conditions to be fulfilled in 
reality, to enable a useful analysis to be made, 
and to see if these conditions can be achieved. If  
such a method is feasible, it might prove a 
powerful tool in investigating the anomalous 
Snoek peaks. 

Unfortunately no experimental data were 
available to the authors, so we proceeded in the 
following way. A system was taken for which a 
model has been proposed that provides us with 
formulae for the fractions n~ as functions of T 
and other determined quantities (binding ener- 
gies, total interstitial content, etc.) from first 
principles; details of the model are given in 
section 2, below. Then by taking definite values 
for these quantities and also for the proportion- 
ality factors K~ of equation 3 and the E~ and ~-~o 
of equation 2, it is clearly possible to trace 
curves of Q-1 as given by equation 1 as a 

function either of T or of o~. However, rather 
than the true curves, we are interested in the 
"experimental" curves that might result from 
observations on a system with the same values of 
the quantities referred to above. To simulate 
such curves, "experimental data" were computed 
by adding a randomly generated experimental 
error to the true values predicted by the model. 
In this way "experimental" spectra were obtained 
for Q-1 for both the varying-temperature and 
varying-frequency cases. From the varying- 
frequency spectra at a fixed (known) temperature, 
a peak analysis was made to recover the values of 
the quantities fed into the curves; a comparison 
was then made with the true values of these 
quantities. The same was done with the varying- 
temperature spectra. We shall see that the 
analysis shows that the frequency-varying 
"experiments" yield much more accurate values 
than the fixed-frequency ones; for this reason 
they would provide the more useful experiment 
in a practical case. 

Finally we should point out that, while of 
course the details of the method presented here 
depend on the system chosen, the line of investi- 
gation proposed-observation and analysis of a 
spectrum over a range of frequency at fixed 
tempera ture-  should be quite generally useful 
for any system giving an anelastic peak spectrum 
behaving as in equation 1, whatever the damping 
mechanisms may be. This is particularly true 
whenever the A~ (and -r~) depend on temperature 
in some unknown or complicated manner. 
Furthermore no knowledge of the form of the ~-,. 
or A~ (as expressed e.g. through equations 2 and 
3) would be required, in contrast to the variable- 
temperature case. 

2. The Model and "Experimental" Data 
The system chosen for analysis is the i ron-  
vanadium-nitrogen one already mentioned in 
section 1 because for this system a model has 
been proposed [16] to account for some experi- 
mental results of Fast and Meijering [13]. The 
model used in this paper (which differs from the 
one in reference 16 in only one detail) is the 
following. The alloy is bcc iron with substitu- 
tional vanadium and with interstitial nitrogen 
atoms which are assumed to occupy octahedral 
sites. Denoting substitutional atoms by X and 
interstitial atoms by I, the model postulates that 
X-I  pairs and X- I - I  trios are formed in thermo- 
dynamic equilibrium under the influence of inter- 
action energies (in the alloy) Bp and B t 
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respectively, where the interaction energy is the 
energy difference between a jump into and out of 
an associated site. The possible existence of 
quartets and other complexes is neglected (it is 
here that this model differs from the one in 1~ 
reference 16; X - I - I - I  quartets are allowed in the ATOM 

latter). It is assumed that trios differing only in FRACTIOK 

the placing of the two interstitials in the six 
octahedral sites around the substitutional atom 
are anelastically equivalent. More precisely: the 
two interstitials jump between associated sites lo-s 
independently of one another, and also the bind- 
ing energy Bt of a trio is the same whatever pair of 
sites they occupy. Thus there are just three 
complexes giving rise to peaks: the "free" inter- 
stitials responsible for the normal Snoek peak 
and the pairs and t r ios  responsible for two 
closely spaced anomalous Snoek-type peaks lo -6 
forming together the observed total anomalous 
peak. The model then predicts [16] the atom 
fractions nl (free), n2 (pairs) and n3 (trios)* of 
interstitials in these three complexes as obtain- 
able from the equations 

Bp 
n2 = 2nsnl exp ~-~ , (4) 

10 Bp .q- Bt 
n3 = f f  nsnl ~ exp k T  ' 

with 

n s + n 2 q - � 8 9  

n l + n 2 - t - n a = n i ,  
(5) 

where ns, nx and n i  denote the unassociated 
substitutional, total substitutional and total 
interstitial fractions respectively. The combina- 
tional factors in equation 4 are a consequence of 
the octahedral siting of  the interstitials in the 
first shell around the substitutional atoms in the 
bcc metal. A typical behaviour of the three 
fractions nl, n2 and nz is shown in fig. la  (the 
computation of which is indicated below); it can 
be seen that there is strong variation with 
temperature. 

The damping spectrum of the system is given 
by equation 1 with r = 1, 2, 3 referring, respec- 
tively, to the peaks produced by the interstitials in 
the free lattice, pairs and trios. The relaxation 
strengths A, (r = 1, 2, 3) are related to the 
corresponding atom fractions n, (r = 1, 2, 3) as 
computed from equations 4 and 5 by 3; and the 
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Figure I (a) The effect of temperature on the distr ibution 
of  intersti t ials in the case of  the model discussed in the 
text.The curves were computed from equat ions 4 and 5 for  
the case n I = 2 • 10 -4 , n  x = 10 -4 , B p =  0.24 eV and 
B t = 0.99 eV. (b) Computed internal fr ict ion spectra for  
the present model for  the same interstit ial f ract ions as 
those given in fig. 2. 

relaxation times % (r = 1, 2, 3) follow the law 2. 
The spectra Q-1 for varying frequency or 
temperature at different values of total fractions 
ni and nx can now be computed, once we have 
assigned values to the basic parameters appear- 
ing in the model. These basic parameters are, as 
is seen from equations 1 to 5, the three propor- 
tionality factors K~ of equation 3, the three 
activation energies E~ and relaxation time 

*The relationship of the interstitial atom fractions nl, n2 and n3 in the three complexes with the atom fractions of the 
three complexes themselves is nl = ni, n~ = np and n3 = 2nt, where ni, np and nt denote respectively the free interstitial, 
pair and trio atom fractions in the notation of the reference 16. 
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constants %0 of equation 2 and the two binding 
energies Bp and Bt of  equations 4 and 5. Values 
for the parameters were of course chosen to be as 
realistic as possible, and in particular to accord 
with known anelastic characteristics of the F e - N  
system. The three proportionality factors K~ 
were chosen as unity [21]. For  the relaxation 
times %o we accept Stephenson's [22] conclusion 
that they are all equal to the same constant, 
universal for Snoek-type processes, in a given 
metal; f rom his analysis this constant is 4.225 • 
10 -15 sec in bcc iron. The activation energy for 
the normal Snoek peak was taken as E1 = 18.350 
kcals/mole from Lord and Beshers [20], and the 
activation energies for the peaks due to the pairs 
and trios as E 2 =21 .800  kcals/mole and 
E3 = 22.250 kcals/mole respectively. The last 
two values are consistent with the position of the 
total anomalous peak observed by Fast and 
Meijering [13]. Finally, the binding energies 
were taken as Bo = 0.24 eV and B~ = 0.29 eV on 
the basis of  a previous study [16] of  the system. 

To give an idea of the spectra obtained from 
the above model we plot curves for Q-a versus T 
at a fixed frequency of o~ = 2~r for a temperature 
range of 250 to 390 ~ K. They are shown in fig. lb. 
The substitutional a tom fraction nx was set at 
10 -4 for all curves, and the five different inter- 
stitial a tom fractions n1 yielding the five curves 
are in the range 2 to 20 • l0 -5 inclusive. The 
low value 10 -4 for nx was chosen, as it corre- 
sponds to the amount  of  vanadium estimated by 
Fast [23] to be in solution in his study of the 
F e - V - N  system. Further, the value of nx should 
be chosen so that the peaks being investigated 
are of  comparable height, which is the case for 
nx = 10 -4 at the present binding energies. The 
same value for nx is maintained throughout the 
entire work. 

The midpoint of  the total anomalous peak of 
fig. lb is at about 353 ~ K, and this was the 
temperature chosen for the isothermal variable- 
frequency spectra. The Q-1 versus log ~o plots 
for the above model, at T = 353 ~ K and for the 
same five values of  interstitial fraction n~ as used 
in fig. lb, are given in fig. 2 (full lines). The 
"frequency peak" occurs roughly in the middle 
of  the log frequency range of 0.5 to 50 Hz at this 
temperature. For two of these spectra the three 
component  curves representing the free inter- 
stitial, pair and trio contributions are also 
indicated (broken lines). 

Knowing the exact spectral curves for the 
model (as given e.g. in figs. lb  and 2), we now 
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Figure 2 Some of the computer-produced internal friction 
spectra, taken as a function of frequency, used in the 
analysis discussed in the text. The spectra were evalua- 
ted at a temperature of 353 ~ K and the component curves 
of two of the spectra, n~ equal to 0.8 and 1.6 x 10 -4, are 
shown as dashed and dash-dot curves respectively. The 
error bars indicate the "experimental" data for the case 
w h e n ~ = 2 x  10 s 

wish to simulate the spectra such as an experi- 
ment might give for the same system, and 
analyse these spectra to recover the values of  the 
parameters. We can then compare these values 
with the correct ones to get an idea of the 
accuracy of  the results such an "experiment" 
would yield. We are principally interested in iso- 
thermal "experiments" at variable frequency, for 
reasons given in section 1 (strong temperature- 
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dependence of the A).  Our programme is the 
following: 
(i) Simulation of experimental data for Q-~ 
versus log co spectra. This is done from the 
exact curves (such as those in fig. 2) by applying 
a randomly generated error to the correct values. 
The error function must correspond to reality as 
much as possible; a study of the literature 
convinced us that it was reasonable to assign a 
maximum tolerance to a given experiment and 
add a random error to each computed Q-1 value. 
The limiting tolerances chosen were :L 10 -5, 
:t: 2 • 10 -5 and i 3 • 10 -5, thus giving three 
"experimental" sets of data of differing "accur- 
acy", each for ten different values of n r These 
sets of data with their associated tolerances are 
hence those which would remain to be analysed, 
after the subtraction of background damping in a 
real experiment. 

Some of the computer-produced data is shown 
in fig. 2 for five of the n I values. One object of 
taking a range of tolerances was to discover the 
upper limit which the analytical technique could 
handle. 

Representing these data as "experimental" 
obviously implies that the frequency range, 
temperature and values of n I will already have 
been chosen by the experimenter. We cannot 
expect to measure the whole internal friction 
curve isothermally as a function of frequency 
and must therefore work within a limited 
frequency bracket. The equipment developed by 
Martinet [24] for example, covered only one 
decade of frequency, taking about 30 sec to 
stabilise a new frequency. However, two 
decades are possible, though perhaps at the 
limit, using equipment of this type; therefore we 
take 0.5 Hz to 50 Hz as our frequency range and 
consider this to be experimentally realisable. 
With this frequency range fixed by the equip- 
ment, the temperature (which can presumably be 
set to any desired value) must be set to allow 
study of the most useful part of the damping 
spectrum. We want to include as much of the 
anomalous peak as possible; and in fact we need 
only include sufficient of the normal Snoek peak 
"tail" to permit an accurate estimate of its 
height, because in practice its relaxation time is 
always known (i.e. in our notation "r~0 and E~ are 
known, and ~'~ can be calculated from equation 2 
for any desired temperature). We shall therefore, 
here and henceforth, assume that ~-a is known for 
any T and shall use this fact in the data analysis 
below. To fix the temperature of the "experi- 
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ment" in accordance with these remarks, it is 
supposed that a preliminary run has been made 
for fixed frequency and variable temperature; 
the temperature is then chosen to be at about the 
middle of the anomalous peak, here at T = 353 ~ 
K. Finally, the values of n t are always known by 
the experimenter, as is also'the value of nx which 
is the same for all "runs",  and is given above. 
(ii) The analysis of the "experimental" data is 
described in detail in section 3. There are two 
steps. At first we only assume the spectra are 
describable by equation 1, and derive "best" 
values for the strengths A~ and times -r~ for each 
curve (i.e. at each of the ten values of ni) 
together with their estimated "experimental" 
errors. This is done for the three sets of "data"  
with different tolerances. As stated under (i) 
above we know only the time "r 1 for the norma! 
Snoek peak. Not  only are the remaining %. and 
all the Ar unknown, but the number of terms in 
the sum in equation 1 is unknown; the analysis 
must also recover this number - here, 3. 

So far the analysis is quite general in the sense 
that the method (below) allows us to resolve 
under certain conditions spectra describable by 
equation 1, whatever the system producing them 
(given the one value "rl). The second step 
relates the model to the data. For each tolerance, 
we use the set of data from the ten spectra to 
deduce the proportionality factors from equation 
3 and the second of equations 5. Thus we have 

3 

~KrA_ nI (~) i = 1,2, 10 (6) 
T(i) 

200 . . . .  
r = l  

where A,.(~) is the relaxation strength of peak r as 
obtained from the analysis of the spectrum 
"observed" for an interstitial content ni(% The 
"best" values of Ki, Ks, and K3, together with 
their errors, are computed from these equations 
(see section 3). Finally equations 3, 4 and 5 are 
used to get the "best" values for the binding 
energies By and Bt. The results for the three K's 
and two binding energies are compared with the 
exact values, for each tolerance. 

To obtain values for the -r~0 and E~ from the 
"experiments", we must repeat the above 
process for several different temperatures; then 
they may be obtained from the "observed" ~-~ 
using equation 2. In fact this was done for only 
one tolerance (2 • 10 -5) and one value of ni, as 
shown below. It is noted that the range of 
temperature which can be employed depends 
directly on the frequency range. 
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(iii) An analogous procedure was used to 
generate varying-temperature "experiments" at a 
fixed frequency of co = 2rr. Data were simulated 
to give plots for the same ten values of n~ as 
above, but only for one (intermediate) tolerance 
• 2 • 10 -'5. The exact curves from which these 
data are generated are shown in fig. l b for five 
values of n~. 

In analysing these data one proceeds from the 
same assumption as would be necessary in a real 
experimental situation. The peak relaxation 
strengths are taken to be constants, independent 
of temperature, i.e. the peaks themselves are 
supposed to be symmetrical about their centres 
(as functions of l /T);  the relaxation times follow 
the law 2. The data were therefore analysed to 
find the "best" fit by three symmetrical peaks, 
and give values for the three A and the three 
peak temperatures (we assumed the fact of three 
relaxation processes to be known) for each n> 
The binding energies Bp and Bt were then 
obtained from the zJ~ (using the previous Bt 
method of reference 16) and again compared with 
the correct values. The values for Bp and Bt 
obtained by the varying-temperature "experi- 
ment" are considerably worse than those 
obtained by the varying-frequency "experiment". 
This difference is due to the assumption of 
symmetric curves in the curve analysis; while it is 
evidently correct in the latter case it is not in the 
former, because of the strong temperature- 
dependence of the A~. 

3. Derivation of A and r Terms 
The data shown in fig. 2 are some of the 

calculated "experimental" damping spectra and 
are imprecise, Q-~zL E. At first we assume 
known that there are three peaks. In order to 
fit these to equation 1 for three peaks and n 
experimental points, we can define 

n 

~ = 

j=l 

3 A,j--1 -~/~ 
__QJ-1 _ ~ "rd 

6~j. 12 
~=I - -  + ~oj~ (7) 

T~j 

E 

t ./ 

which is to be minimised to obtain the desired 
values of the three A and two r terms. Equation 7 
was found to be the most convenient way of 
curve-fitting the "experimental" data. The use of 

1/r in place of -r reduced computation and since 
the former was returned by the curve-fitting 
technique it is this which is discussed in the 
results given below. The actual values of 1/r for 
the anomalous peaks were 3.932 and 7.468 sec -1 
i.e. one greater and one less than 27r. The 
technique of curve-fitting employed throughout 
this work was a method of steepest descents 
using conjugate directions due to Powell [25]. 
This technique has the advantages that derivatives 
of the function with respect to the five unknowns 
are not required, and also that an estimate of 
the standard deviations can be made [25]. 

Whilst the "experimental" damping values are 
known the error e in each is in practice not 
known, thus making the minimal/~2 difficult to 
find. To overcome this difficulty we replaced e 
with the known maximum tolerance c~ of all 

n z x 10  6 

1 

o 
o 

TRIOS 

I 

PAIRS 

t 
lO 

og ~ ~ 3 
h. x l O  2 

Figure 3 Results of curve-f i t t ing the "exper imenta l "  data 

of a var iable f requency exper iment  at 353 ~ K, with the ex- 

perimental error ~ set at 2 • 10 -2 for  all ten values of n I 

assuming that  there are two cont r ibu t ions  to the anomal-  

ous peak. The crosses refer to cases where the correct  

value of e, the error in each experimental  point, was inclu- 

ded in equat ion 7. The error bars are the standard 

deviat ions where c~ was subst i tu ted for  E in equat ion 7. 

The ful l  curves are the theoret ical  ones based on the 

model, given in the text, which was used to compute the 
original "exper imenta l "  data. 
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points. This approximation obviously affects the 
minimum/3 2 with respect to the five unknowns, 
but our tests showed (fig. 3) that it does not alter 
the resulting five values significantly. The fact 
that the true [3 2 fit deviates slightly from the real 
minimumindicates that rounding incurred in out- 
puting the error e in the original computed data 
is in any case significant. Other preliminary tests 
showed both that the final minimum point 
achieved was independent of starting values and 
also that the known true values of the five un- 
knowns are returned by the computer if the 
known "perfect" data are used, with an arbitrary 
value of ~, for a given set of data. Having estab- 
lished that the curve-fitting technique using c~ in 
place of e can return a unique and acceptable 
result for any input data, we can proceed to 
examine the analysis of the "experimental" data, 
the synthesis of which was discussed in the 
previous section. 

The first series of calculations proper, investi- 
gated the effect of the maximum tolerance c~ on 
the results and on their standard deviations, 
assuming the anomalous peak to have two 
components. The results showed, as one might 
expect, that the lower the value of c~ the better the 
"fit". For  any given value of  ~, the results for a 
complete set of data, that is for all ten ni when 
considered together as in fig. 3, support the 
existence of two contributions to the total 
anomalous peak as can be seen by the constancy 
of  1/'r. Also shown in fig. 3 are the theoretical 
curves derived directly from the present model; 
the agreement between the curve-fitting "experi- 
mental" data results and the original model is 
quite reasonable. 

Whilst this result is clearly satisfactory we 
must remark that we did assume the correct 
number of anomalous peaks, whereas in practice 
their number is not known. We applied the 
obvious test and tried to analyse some of  the 
"experimental" data assuming that the total 
anomalous peak is made up of first one, and then 
three contributions. The result of the first of these 
tests is shown in figs. 4a and the non-constancy 
of 1/-r for all n1 is in itself sufficient evidence that 
more than one process contributes to the total 
anomalous peak. It is interesting that the curve 
of l/-r versus ni should appear to intersect the 
abscissa at the value for the relaxation of the 
interstitials in X-N pairs. However this certainly 
cannot be cited as evidence that only one 
relaxation process occurs at infinitesimal concen- 
tration. 
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The three-peak analysis (in the discussion here 
we refer only to anomalous peaks) also showed 
some interesting characteristics. The curve- 
fitting procedure produced one of two situations: 
(i) Two of the three relaxation processes had the 
same relaxation time and the sum of their A's 
was equal to one of  the peaks in the two-peak 
case (i.e. the computer superposed the two 
peaks). The third process was correctly allocated 
(in 1/-r and A) to the second of the peaks in the 
two-peak case. 
(ii) One of  the three A values was returned as 
zero with its associated I/~- value set at some 
arbitrary value, i.e. the computer found that this 
peak was not necessary to fit the "experimental" 
data. The remaining two peaks were correctly 
allocated to the two peaks of the two-peak 
analysis. In only one case was a spurious mini- 
mum, i.e. a fake set of data, returned by the 
curve-fitting procedure. 

Taking the results in fig. 4 together with those 
in fig. 3, one could reasonably conclude that 
there are only two components in the total 
anomalous peak. This in itself is a remarkable 
result, but we are not sure that this would be true 
independently of the number of anomalous 
components. 

4. Derivation of the K and B Terms 
From the data in fig. 3 it is now possible to 
deduce the proportionality constants K in 
equation 3. We have about eight values of  the A 
terms with reasonable precision as a function of 
ni (fig. 3), the total interstitial atom fraction in 
the alloy. The standard deviations in 1/-r and A 
at low ni were too large (for aIl ~) to allow as to 
place any reliance on the A values and these were 
discarded in the following analysis. Selecting the 
eight equations 6 for the remaining values of the 
n~(O, we rewrite them in matrix form: 

1 
20---0 AK ~- nz 

where A is an 8 • 3 matrix. I fA '  is the transpose 
of V, then 

1 
- - A ' A K - ~  A' 200 n1 

which can be solved using standard methods [26] 
for the K's thus allowing the fractions of inter- 
stitials responsible for each relaxation process to 
be found immediately from fig. 3. 

It is only at this point that for a real experi- 
ment a decision would have to be taken about the 
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Figure 4 Results of curve-fitt ing the "exper imental"  data of the variable-frequency experiment at 353 ~ K assuming that 
the total anomalous peak is made up of (a) one and (b) three contributions. The input data for analysis are the same as 
those used in fig. 3 where the correct number (two) of  contr ibut ions to the total anomalous peak had been assumed. 
The results are discussed in the text. A single relaxation time; [ ]  sum of two A with identical ~- values; �9 time with 

zero A. 

model to interpret the results*. In this instance 
we naturally assumed the model used as a basis 
for generating the experimental data, to apply, 
and from equations 4 and 5 we derived values for 
the B terms which are given in table I together 
with the K's. The deviations were derived using 
standard methods as given, for example, by 
Margenau and Murphy [27], under the assump- 
tion that the errors in the A and K terms are 
independent. In a practical case, when applying 
this technique to real experimental data, several 
models may have to be tried to see which gives 
the best fit with the damping behaviour of each 
mechanism having to be known. 

Table I illustrates the effect of overestimating 
the A values using equation 7 (evident in fig. 3), 
on the derived K~ and K a data, and their con- 
comitant influence on the B values. It is clear 
that no great reliance can be placed on the values 
of K. On the other hand the results obtained for 
the B values together with their errors can be 

considered satisfactory (evidently, partly because 
Bp and Be are related logarithmically to the 
measured quantities). 

We can now consider what other information 
is available to us from the frequency experiment. 
At a given temperature we now know A and -r 
for each peak and, further, the curves in fig. 1 a 
can be computed because the interaction energies 
Bp and Be are also known. I f  the temperature of  
the "computer experiment" is now varied within 
the available frequency bracket, the temperature- 
dependence of both the A and ~- terms can be 
studied. The appropriate "computer experi- 
ments" were therefore carried out with 
a = 2  • 10 -a and n i = 1 . 6  • 10 -~ and the 
results are presented in fig. 5. This will give us 
values for the E~ and r ,  0 via equation 2. 

These results show that whilst A 1 for the Snoek 
peak is always returned accurately when sufficient 
of the tail is available for analysis (presumably 
because "rl is given), the range of temperature 

*Of course our simulated experimental data were based on a model; what we mean here is that  the procedure so far 
could be applied directly to peak analysis of actual experimental data, and does not require any model to interpret the 
data. 
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T A B L E  I 

Data  /(1 Ka /(8 Bv (eV) Bt (eV) 

" M o d e l "  1.0 1.0 1.0 0.24 0.29 
• 10 -~ 0.866 • 0.423 1.120 _• 0.456 1.351 -4- 1.166 0.245 ~= 0.025 0.278 -4- 0.034 
4- 2 x 10 -5 0.896 4- 0.602 1.021 -4- 0.943 1.324 q- 1.375 0.241 • 0.046 0.278 -4- 0.041 
-4- 3 x 10 -~ 0.887 -4- 0.460 1.112 -4- 0.712 1.305 -4- 1.144 0.245 :tz 0.035 0.275 4- 0.040 

which is available to return useful values of the 
A's for the anomalies is very limited, although 
their relaxation times are given with reasonable 
precision. The inherent temperature-dependence 
of the A terms is however not available for study 
in the case of the anomalies (A/T curves are 
shown in fig. 5a relative to A at 353 ~ K), whereas 
that for the Snoek peak is. The temperature- 
dependence of the -r's for the anomalies can 
however be analysed (fig. 5b). 

On the basis of the results presented we can 
make some comment on the frequency range 
necessary to analyse successfully the damping 
spectrum. The spectrum which is necessary de- 
pends on the relative locations and number of the 
anomalous peaks. In the present case (fig. 5), a 
low frequency co cut-off at about 1 Hz will be the 
maximum which can be tolerated. At the high 
frequency end, practically no reduction can be 
countenanced without reducing the amount of 
"tail" of the Snoek peak to a value which could 
not return an acceptable result. We would add 
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that on the basis of the present work we cannot 
state quantitatively what an acceptable Snoek 
peak tail represents, as it will depend partly on 
the number of experimental points. 

Finally, for comparison purposes, we used the 
above curve-fitting method to study data from a 
variable-temperature" experiment", as mentioned 
in (iii) of section 2. The "experimental" data are 
computer-simulated in the same way as above, 
from the exact curves, some of which are shown 
in fig. lb. The frequency is fixed at co = 2-~- for 
all "experiments" and the temperature varies in 
the range 315 to 390 ~ K inclusive. The resulting 
spectra are analysed to obtain the binding 
energies from the model. As would have to be 
done in a practical case, we assume that the peak 
relaxation strengths are constants independent 
of temperature, i.e. that the peaks themselves are 
symmetrical about their peak temperatures in a 
Q-1 versus 1/T plot. The peak temperatures for 
the anomalous peaks are indicated in fig. 1 b (for 
the exact curves) as T2 and 7"3 for the pair and 

~3 1 

c 

001 

i I i i i .... 
0,001 2.6 2'8 3'0 3.2 

1000 
r 

(a) (b) 
Figure 5 The effect of curve-fitting "experimental" data taken from a series of variable-frequency experiments carried 
out at different temperatures but maintaining the same frequency range 0.5 to 50 Hz. The results are presented showing 
(a) the variation of the three terms as functions of temperatu re; the full curves show the theoretical variation calculated 
from the model and the broken curves show how these curves would shift if z/varied as l IT  (relative to the value at 
353 ~ K); (b) the variation of ~'2 and % with reciprocal temperature. 
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trio peak respectively. The ~r for the peaks are 
supposed, as before, to vary with temperature 
according to equation 2 with the three ~-r0 equal 
to the universal constant 4.225 • 10 -15. 

The analysis gives "best" values for the three 
A~, now constants, and the three E,.. In actual 
practice, rather than the Er, we obtain the three 
peak temperatures T~; the relationship between 
the two for any peak follows from equations 1 
and 2, by noting that the maximum occurs at 

E~ 
co "rr0 exp ~ = 1 

where ~o and "rr 0 are known. The results of the 
analysis are presented in fig. 6; they are very 
misleading as a comparison with fig. 3 shows. 
Further, the interaction energies we derive from 
this "experiment" via equations 3 to 5, and using 
the method of reference 16 are Bp = 0.453 eV 
and Bt = 0.067 eV, which are therefore com- 
pletely unrealistic, as one would expect. It is 
interesting to note that, whilst these curve-fitted 
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Figure 6 Results of curve-f i t t ing "exper imenta l "  data for  a 
variable-temperature experiment, with c~ = 2 • 10 -5, 
assuming that the damping peaks are even about  their 
peak temperatures in a Q_I versus I /T plot. These 
results should be compared with those in fig. 3 for  the 
corresponding variable-frequency experiment. 

results are widely divergent from reality, they do 
show an internal consistency in that the curve- 
fitted peak temperature appears constant and a 
smooth variation of the A's with ni is obtained. 
This consistency is clearly misleading. 

5. Discussion 
The results presented above show that an experi- 
ment using frequency as a variable is capable of 
giving useful information about the origin of 
anomalous Snoek peaks, at least in the type of 
system discussed here. 

The strength of the approach results from the 
fact that we can derive the apparent distribation 
of the interstitials from experimental observa- 
tions before a specific model has to be applied to 
derive interaction energies. At this point we must 
insert a cautionary comment. The observed 
damping behaviour depends not only on the 
distribution of interstitials but also upon their 
ability to respond to an alternating stress, i.e. the 
interstitials must be able to " jump" to be seen by 
the experiment. As an example where this may 
not be true, the interstitials sequestered by the 
substitutional atoms may not always be placed 
within the lattice in such a way that they can 
freely contribute to the damping, and hence 
affect the appropriate A. Thus the derivation of 
the K's in section 4 is not necessarily independent 
of a model invoked to explain the internal 
friction; a knowledge of the damping behaviour 
of any subsequently used model is therefore 
required at that point in the analysis. 

There are several other aspects of the proposed 
experiment which warrant further discussion. In 
the present work we have investigated a case 
where the available frequency range includes the 
anomalous peaks, together with the tail of  the 
Snoek peak. The frequency bracket required for 
any specific case can be estimated from a classical 
experiment (we have tacitly assumed an experi- 
ment using temperature as a variable to be a 
necessary preliminary). We query whether the 
frequency experiment is worthy of consideration 
in a case where the frequency bracket is not 
sufficiently broad to include, for example, the 
tail of  the Snoek peak when the temperature is 
set to study an anomalous peak. This experi- 
ment should only be done under conditions 
where the A values taken for one peak (single or 
composite) can be reliably extrapolated to the 
temperature range over which the second peak 
has been studied thus allowing a true isothermal 
comparison. It would appear from fig. 6a that 
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the (normal) Snoek peak, being the most  precise, 
should be extrapolated in preference to anom-  
alous peaks. 

The degree to which the actual separation o f  
the anomalous  peaks affects the ability o f  the 
analytical technique to return acceptable results 
has not  been investigated specifically here. How- 
ever, considering the curves in figs. lb  and 3, we 
feel that  in any example where a total anomalous  
peak temperature shift with increasing interstitial 
fraction is observable in a temperature experi- 
ment,  the system should be amenable to analysis 
by the frequency experiment. This separation 
would seem to be in the region of  4 ~ C. 

I t  is interesting to note in passing that  this 
min imum separation o f  about  4~  in a variable- 
temperature experiment corresponds to a ratio o f  
relaxation times o f  the total anomalous  peak 
components  o f  about  1.5 at 353 ~ K. The ability 
o f  the variable-frequency experiment to resolve 
contributions to an internal friction peak is 
therefore comparable  to that  o f  isothermal 
elastic after-effect experiments, where a mini- 
m u m  ratio o f  2.5 is reported [28]. 

The experimental precision required depends 
upon  the peak separat ion:  the more  widely 
separated are the peaks the less precision is 
strictly necessary for separation, a l though we 
note that  this would result in more  imprecise 
values o f  A and ~-. F r o m  the present work  a 
precision o f  better than i 3  • 10 -5 in the 
damping measurements is desirable. Some 
subsidiary runs using ~ = 4 • 10 -5 showed such 
a wide scatter that  no conclusions could be 
drawn f rom them. 

Finally we consider whether the effect o f  
precipitation can be allowed for  in the present 
work. Isothermal  precipitation not  only alters 
the total interstitial fraction ni but  is also likely 
to affect the substitutional fraction nx, as one 
would expect the X atoms to form a compound  
with the interstitials if an appreciable interaction 
energy exists in solution in the matrix. Precipita- 
t ion will thus affect all A terms as a function o f  
time during the experiment and precludes the 
assumption of  peaks which are even about  their 
relaxation times. The problem is then analogous 
to the situation in which the interstitial fractions 
vary during the classical temperature experiment 
because o f  the interaction energies. Thus by the 
same analogy it does no t  appear  that  the 
frequency experiment is wor th  while under  such 
conditions. 
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